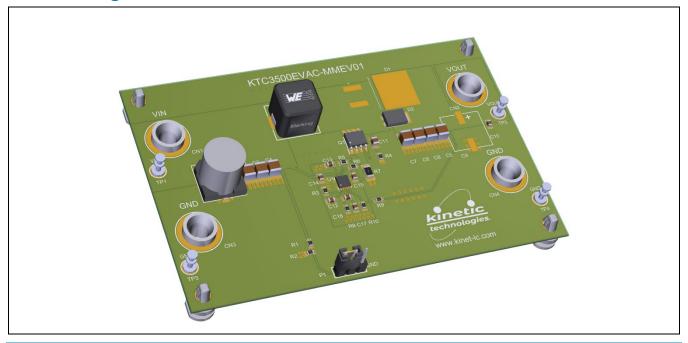


3.5V to 60V Input Boost/SEPIC/Flyback DC-DC Controller

Brief Description

The User Manual describes the design and operation of the KTC3500 boost configuration evaluation board. The KTC3500 EVAL Kit contains the schematic, and the bill of materials for the KTC3500 Evaluation Board. KTC3500 is a low quiescent current DC/DC controller supporting boost, SEPIC, and flyback topologies. It employs current-mode control with internal slope compensation for fast transient response as well as superior output voltage regulation. An analog control loop allows flexibility to set the loop gain to optimize the controller's response. This KTC3500 EVK is configured as a boost converter. The EVK is designed for 7-17 V_{IN}, 24 V_{OUT}, 48W (typical) boost converter applications. For ordering the KTC3500 device, please refer to the KTC3500 data sheet or contact a sales representative.


EVK Ordering Information

Part Number	Description	IC Package
KTC3500EVAC-MMEV01	KTC3500 Boost EVAL Kit: 7-17V Input, 24V Output, 48W (typ.)	DFN33-10

QR Links for Documents

IC Datasheet	EVAL Kit Landing Page
https://www.kinet-ic.com/KTC3500/	https://www.kinet-ic.com/KTC3500evac-mmev01/

3D CAD Image

EVAL Kit Physical Contents

Item #	Description	Quantity
1	KTC3500 Boost Configuration EVAL fully assembled PCB	1
2	Anti-static bag	1
3	Quick Start Guide, printed 1 page (A4 or US Letter)	1
4	EVAL Kit box	1

User-Supplied Equipment

Required Equipment

- 1. Bench Power Supply for VIN 7V/17V and 5A as needed for the intended application.
- 2. Digital Multimeter used to measure input/output voltages and currents.
- 3. Load either power resistors, an E-Load, or an actual system load.

Optional Equipment

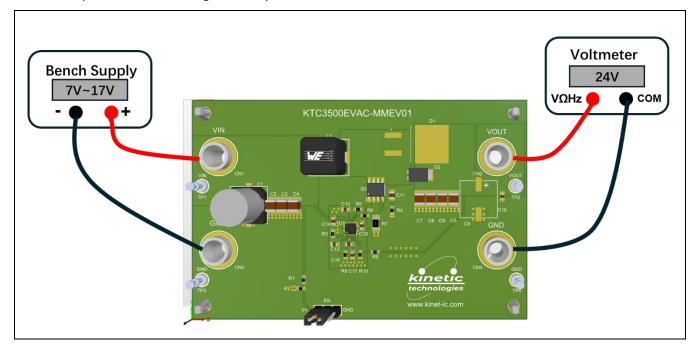
- 1. Oscilloscope and Voltage Probes for dynamic testing, measurements, and to observe input/output voltages and currents within waveforms.
- 2. Additional Digital Multimeters

Recommended Operating Conditions

Symbol	Symbol Description		Units
V_{IN}	Input High Voltage Inputs	7 to 17	>
V _{OUT}	V _{OUT} Output Operating Voltage		٧
Іоит	Output Load Current	0 to 2	Α

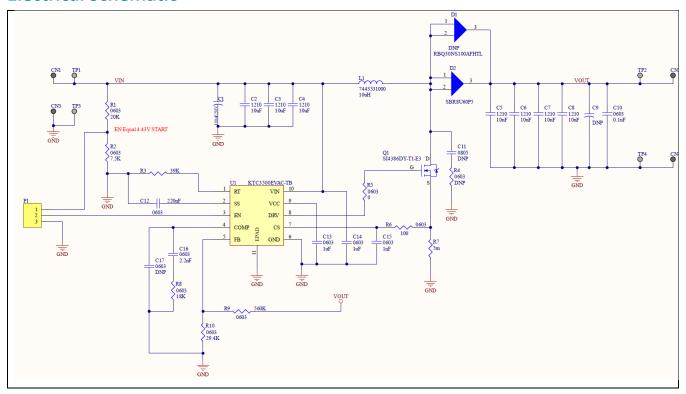
Jumper Descriptions

Designator	Name	Description	Default
		Active-High Enable Input	
P1	EN	L: Shutdown Mode – switch disabled	Н
		H: Enable Mode – normal switch operation	



Quick Start Procedures

- 1. Before connecting the EVAL board to the VIN bench supply, set the supply to 0 Volts. Turn off the supply. While off, connect power cables to the VIN (CN1) and GND (CN3) on the EVAL board and connect to VIN+ and VIN- on the bench supply.
- 2. Turn on the VIN bench supply and very slowly ramp its voltage to an appropriate voltage. While ramping up VIN slowly, use the bench supply's output current indication (or a digital multimeter) to monitor the VIN current. Current will flow even though the part is not enabled. If the current becomes high, reduce the VIN voltage quickly to prevent damage. Then inspect the setup for any wiring errors.
- 3. With valid VIN voltage, use a digital multimeter to check the output voltage between VOUT and GND terminals on the EVAL Kit. It should be 24V.
- 4. EN is connected to VIN by default through R1 and R2 to enable the output. Connect EN to GND to disable.

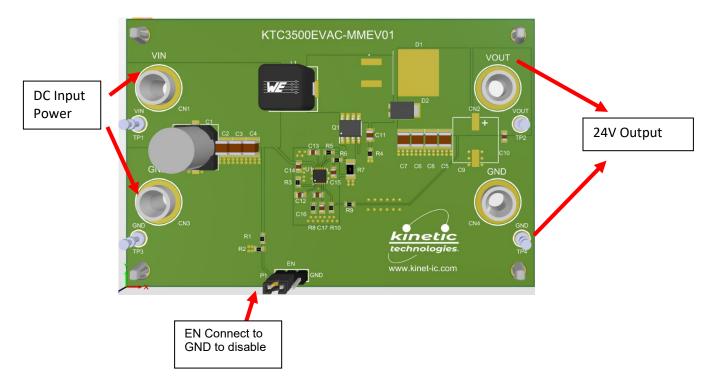

Typical Test Setup Diagram

As an example, use the following test setup to measure items 3 and 4 in the Quick Start Procedures.

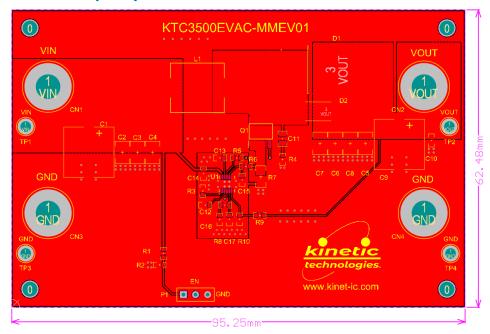
Electrical Schematic

General Configuration and Description

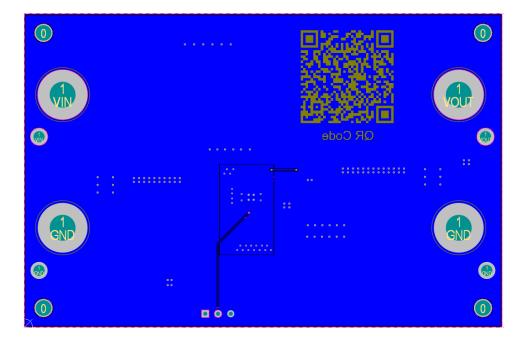
Physical Access


The table below lists the KTC3500EVAC -MMEV01/connectors functionality.

Connector	Description		
VIN (CN1)	DC input newer connector (VIN) is negitive nin and CND is negative nin)		
GND (CN3)	DC input power connector (VIN is positive pin and GND is negative pin)		
VOUT (CN2)	Output voltage connector (VOLIT is positive pin and CND is pogative pin)		
GND (CN4)	Output voltage connector (VOUT is positive pin and GND is negative pin)		
	Enable signal connector		
EN (P1)	(By default, KTC3500 is enabled with EN connected to VIN To disable, connect EN to GND)		
TEST POINT	TP1(VIN), TP3(GND), TP2(VOUT), TP4(GND)		
·			


Test Setup

- 1. The "Typical Test Setup Diagram" shows a typical setup for KTC3500-MMEV01. Input voltage can be applied as described in "Recommended Operating Conditions".
- 2. EN is connected to Vin by default through R1 and R2. It can also be connected to GND to disable.
- 3. The EVB can also be turned on by enable control or by an external signal by removing R1: Apply input power, then switch EN pin from logic LOW to logic HIGH.
- 4. Use a digital multimeter and an electronic load. For input voltages ranging from 7V to 17V, the output voltage is 24V. The maximum output current is 2A.



Printed Circuit Board (PCB)

Top Side Layout/Routing

Bottom Layer Routing



Layout Guidelines

The PCB layout is divided into power ground and analog ground. The input side and output side power components share a common power ground plane. The IC control components should be grouped together to share an analog ground plane. The power ground and analog ground converge at the IC controller as a single grounding point connection.

The following layout guidelines are recommended for optimum performance.

- 1. Keep the power stage loop area as small as possible. This includes the input loop (C4, L1, Q1 and R7) and the output loop (L1, C7 and D2).
- 2. Use a single point connection between AGND (GND of KTC3500) and power GND (See diagram below).
- 3. Ground all the KTC3500 control components (R2, R3, R8, R10, C12, C13, C14, C15) to AGND, close to the IC.
- 4. Keep the low-level control circuit traces far away from noisy switching Voltages and Currents.
- 5. CS pin should sense the current signal through shunt resistor R7. A 100Ω to $1k\Omega$ (R6) and 100pF to 1nF Cap (C15) is used to form an RC filter. It is placed in series with the CS pin and C15 should terminate at AGND near the KTC3500.
- 6. Keep FB, COMP and CS pins far from high noise sources. In some high output current applications, a typically $10k\Omega$ resistor is suggested to insert between FB pin and output resistor divider network to filter noise. Small capacitors can be added on FB, Comp and CS without effecting stability.

EVAL Kit Manual

Bill of Materials (BOM)

Designator	Description	QTY	Manufacturer	Manufacturer Part Number
C1	CAP ALUM HYB 100UF 20% 50V SMD		Rubycon	50PEV100M10X10.5
C2, C3, C4, C5, C6, C7, C8	CAP CER 10uF 50V X5R 1210	7	Samsung	CL32A106KBJNNNE
C10	CAP CER 0.1UF 50V X5R 0603	1	Yageo	CC0603KRX5R9BB104
C12	CAP CER 0.22UF 50V X5R 0603	1	Samsung	CL10A224KB8NNNC
C13, C14	CAP CER 1UF 50V X5R 0603	2	Samsung	CL10A105KB8NNNC
C15	CAP CER 1000PF 50V X5R 0603	1	TDK Corporation	C1608X5R1H102K080AA
C16	CAP CER 2200PF 50V X5R 0603	1	TDK Corporation	C1608X5R1H222K080AA
D2	DIODE SBR 60V 8A POWERDI5	1	Diodes Incorporated	SBR8U60P5-7
L1	FIXED IND 10UH 9A 23.1 MOHM SMD	1	Wurth Elektronik	7443331000
Q1	MOSFET N-CH 30V 11A 8SO	1	Vishay Siliconix	SI4386DY-T1-E3
R1	RES 20K OHM 0603	1	Yageo	C0603FR-0720KL
R2	RES 7.5K OHM 1% 1/10W 0603	1	Yageo	RC0603FR-077K5L
R3	RES 39K OHM 1% 1/10W 0603	1	Yageo	RC0603FR-0739KL
R5	RES 0 OHM JUMPER 1/10W 0603	1	Yageo	RC0603JR-070RL
R6	RES 100 OHM 1% 1/10W 0603	1	Yageo	RC0603FR-07100RL
R7	RES 0.005 OHM 1% 1W 1206	1	Yageo	PA1206FRF470R005L
R8	RES 18K OHM 1% 1/10W 0603	1	Yageo	RC0603FR-0718KL
R9	RES 560K OHM 1% 1/10W 0603	1	Yageo	RC0603FR-07560KL
R10	RES 29.4K OHM 1% 1/10W 0603	1	Yageo	RC0603FR-0729K4L
U1	3.5V to 60V Input Boost/SEPIC/Flyback DC-DC Controller	1	Kinetic Technologies	KTC3500EVAC-TB

EVAL Kit Manual

KTC3500 Boost Configuration EVB

Important Notices

Legal notice

Copyright © Kinetic Technologies. Other names, brands and trademarks are the property of others.

Kinetic Technologies assumes no responsibility or liability for information contained in this document. Kinetic Technologies reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or services without notice. The information contained herein is believed to be accurate and reliable at the time of printing.

Reference design policy

This document is provided as a design reference and Kinetic Technologies assumes no responsibility or liability for the information contained in this document. Kinetic Technologies reserves the right to make corrections, modifications, enhancements, improvements, and other changes to this reference design documentation without notice.

Reference designs are created using Kinetic Technologies' published specifications as well as the published specifications of other device manufacturers. This information may not be current at the time the reference design is built. Kinetic Technologies and/or its licensors do not warrant the accuracy or completeness of the specifications or any information contained therein.

Kinetic Technologies does not warrant that the designs are production worthy. Customer should completely validate and test the design implementation to confirm the system functionality for the end use application.

Kinetic Technologies provides its customers with limited product warranties, according to the standard Kinetic Technologies terms and conditions.

For the most current product information visit us at www.kinet-ic.com

Life support policy

LIFE SUPPORT: KINETIC TECHNOLOGIES' PRODUCTS ARE NOT DESIGNED, INTENDED, OR AUTHORIZED FOR USE AS COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS. NO WARRANTY, EXPRESS OR IMPLIED, IS MADE FOR THIS USE. AUTHORIZATION FOR SUCH USE SHALL NOT BE GIVEN BY KINETIC TECHNOLOGIES, AND THE PRODUCTS SHALL NOT BE USED IN SUCH DEVICES OR SYSTEMS, EXCEPT UPON THE WRITTEN APPROVAL OF THE PRESIDENT OF KINETIC TECHNOLOGIES FOLLOWING A DETERMINATION BY KINETIC TECHNOLOGIES THAT SUCH USE IS FEASIBLE. SUCH APPROVAL MAY BE WITHHELD FOR ANY OR NO REASON.

"Life support devices or systems" are devices or systems which (1) are intended for surgical implant into the human body, (2) support or sustain human life, or (3) monitor critical bodily functions including, but not limited to, cardiac, respirator, and neurological functions, and whose failure to perform can be reasonably expected to result in a significant bodily injury to the user. A "critical component" is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

SUBSTANCE COMPLIANCE

Kinetic Technologies IC products are compliant with RoHS, formally known as Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment. However, this evaluation kit does not fall within the scope of the EU directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and may not meet the requirements of these or related directives. To the best of our knowledge the information is true and correct as of the date of the original publication of the information. Kinetic Technologies bears no responsibility to update such statement.