

Endless Power for Always-On IoT and Wearable Devices

Dave Wilson 07Feb'18 v1.1

- Introduction and concept
- Wireless charging ecosystem
- Practical implementations
- Future directions

The Problem

- More devices More connected collecting/sharing data Always on, and always "on the go"
- More ways to have battery anxiety
 More and more devices to maintain
 Greater problems when a device is off-line

- Hard-wired devices with separate mains power
- Hard-wired devices with combined data-power (ex. USB)

More troubling...

- Battery operated devices requiring battery replacement
- Battery operated devices requiring periodic recharging
- Unserviceable battery operated devices
 - Especially sealed devices with no connector

Better solutions

- Hard-wired devices with combined data-power
 - Power over Ethernet (short-to-long distances)
 - Excellent IoT solution for large buildings, factories, etc. Fully integrates: phone, intercom, sensor networks, security
- Battery operated devices with continuous or ubiquitous access to a charging source
 - USB-C but the trend in phones, personal care devices, wearables, and medical devices is fully wireless data and exactly <u>zero</u> connectors
 - A better, better way: wireless power delivery

A Wireless Charging Ecosystem

- <u>Standards</u> based any device works on any charger
 - Great user experience guaranteed by compliance testing!
 - Wireless eliminates connector/cable issues, especially in public infrastructure subject to damage/contamination
- Charging spots are everywhere:
 - Home (multiple locations)
 - Automotive
 - Office
 - Public infrastructure (everywhere)

Then a miracle happens...

- Battery anxiety diminishes because devices can be charged almost anywhere wirelessly
- Batteries can become smaller
- The 'last connector' will largely go extinct
 - No mechanical reliability issues
 - Products can be easily sealed against liquids, dust, gas
- Products will no longer be sold with power supplies !!!!

And even more surprising...

Changes people's behaviors !

- "Fishers of wires" run their phone down to zero before recharging (And hence the short term market demand for "fast charging")
- "Drop and forget" users keep their phone topped off at 100% all the time !
- And how is it possible to choose the wrong micro-USB orientation way more than 50% of the time ???

A Practical Piece of the Puzzle

- Qi standards based wireless power delivery system
 - Short vertical distance (typically <1cm) magnetic inductive coupling
 - Uses partially resonant coupling for optimum power transfer
 - Good solution for cell phones, wearables, and many other IoT devices
 - Supports low bandwidth (~500bps) bi-directional data transfer

Qi Is a Robust, Widely Deployed Standard

- A wide range of compliant Qi products are here today
 - Adopted by Apple, Samsung, LG, etc. for phones/wearables
 - Reasonably efficient and very cost effective
 - Migrating into other wearables and other consumer products
 - Extensible to smaller devices and multiple concurrent devices
 - Extensible to much greater than present 15-Watt limitation
- And data, too !
 - Qi supports low bit rate (~500bps) bidirectional data transfer
 - Can eliminate costly, troublesome radios in various cases
 - Charger base can link IoT device to/from wider area networks

Practical, here today, standard

- Overwhelmingly dominant standard
 - 2017: 325 million receivers, 75 million transmitters
 - With Apple adoption, growth rate is explosive
 - Projected 1000+ million units by 2020
 - Already cost effective and commoditizing quickly
 - Nearly all traditionally slow auto makers have adopted Qi

Other applications

- Power <u>and</u> data delivery to door/window sensors and actuators
 - No cables through hinges, across moving parts
- Power and data delivery to inaccessible areas, pressure vessels, medical applications, wet/hot/cold areas
 - Avoids seals, breaks in surfaces, bonding incompatible materials, etc.
 - Safe, low voltage, and minimally interacting with biologics, hazardous materials, explosive mixtures, etc.
- All of the above could, or already do use Qi technology directly or low cost derivatives thereof

What about long distance power delivery?

- Radio, ultrasound, light, and highly resonant inductive systems are all being looked at, but seem far off in the future as an ecosystem solution
- So far, practical for milliwatts/microwatts at a distance
- Limitations and unknowns
 - Safety issues / concerns
 - Emissions and radio interference issues
 - Efficiency and cost issues

 However, potentially ideal for certain sensor networks, etc. which require only tiny amounts of average power

Where this is going...

One standard to rule them all

(mostly true - and everybody wins)

The Role of the IC Company

- Driver of commercialization and commoditization
 - When the cost and business opportunity make sense !

Thank you